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It is pointed out, in theories which give a dynamical description of the reduction 
of the state vector, that the reduction should take place in a finite time. It is 
shown that the reduction time is infinite in the Bohm-Bub theory, and finite in 
the author's theory. 
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1. I N T R O D U C T I O N  

When quantum theory describes the measurement process, the state vector 
after the measurement has the form 

IO, t ) = E a o  (1.1) 
n 

Here /~bn, t )  describes the complete physical system (including apparatus) 
corresponding to the nth outcome of the experiment. The squared 
amplitude lanl 2 is the probability of the nth outcome, and does not change 
with time once the measurement is completed, as long as I~, t )  evolves 
according to the usual Schr6dinger equation. 

The so-called "reduction of the state vector" is the replacement of (1.1) 
by 

[O, t )  = I~b,~, t )  (1.2) 

If the state vector is interpreted as describing an ensemble of identical 
experiments, then the transition from (1.1) to (1.2) does not need a 
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dynamical description.ll 3) This nondynamical reduction of the state vector is 
an act performed on a piece of paper by a theoretical physicist who wishes 
to describe the future behavior of a subensemble of experiments, those 
which resulted in the mth outcome. To do this, the theoretician must be 
confident that the physical situation is such that the individual terms in 
(1.1) will not interfere in the future, 2 so he is justified in considering the 
future evolution of (1.2) by itself. The reduction of the state vector is "a 
convenience, not a necessity, ''~1) because the theoretician would obtain the 
same future predictions by considering the more cumbersome equation 
(1.1), and finally projecting out the subensemble of interest. 

However, if the state vector is to be interpreted as describing (as being 
in one-to-one correspondence with) a single experiment, then as the 
physical system dynamically evolves, the transition from (1.1) to (1.2) must 
take place dynamically. The result (1.1) given by the Schr6dinger equation 
is an incorrect description of the outcome of the single measurement, so the 
Schr6dinger equation must be modified. In a dynamical reduction theory 
one shows how the amplitude am grows to unity while all the other 
amplitudes decrease to zero? 

If a dynamical reduction theory is to make physical sense, the reduc- 
tion must take place in a finite time because an experiment reveals its out- 
come in a finite time. It is the purpose of this note to discuss the reduction 
time for the dynamical reduction theories of Bohm and Bub (9) and the 
author, 4 the first two theories of this type. It will be emphasized that the 
reduction time for the former theory is infinite, and for the latter theory is 
finite. 

2 From our point of view, the "problem of the theory of measurement," whose solution is 
undertaken by Daneri, Loinger, and Prosperi, ~4) by Zeh ~5) and by Zurek, (6) is simply how to 
delineate the circumstances under which such a nondynamical reduction is justified. The 
argument typically consists in showing how, for practical purposes, the density matrix of the 
pure state, Ill,, t)(~p, t[, can be replaced after a measurement by the density matrix of the 
mixture Z ,  la,I 2 I~b,, t)(~bn, tl. 

3 Machida and Namiki 17~ and Wigner 181 alter quantum theory and construct dynamical reduc- 
tion theories in which a pure density matrix evolves into a mixture (the former by introduc- 
ing a family of Hilbert spaces to describe the apparatus and averaging over them, the latter 
by modifying the Schr6dinger equation for the density matrix). However, these authors do 
not show how a single system ends up described by one or another diagonal element of the 
mixture density matrix. Their work might be regarded as preliminary, to be followed in the 
future by a more detailed dynamics of each individual system, in the ensemble they are 
describing. 

4 See Ref. 10. Reference 10c discusses the gambler's ruin analogy. Ref. 10d contains a review of 
the preceding work. Reference 10e discusses experimental tests which can determine the 
magnitude of the reduction time. 
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2. BOHM-BUB'S DYNAMICAL REDUCTION THEORY 

In the Bohm Bub theory, the dynamical reduction is described by 

dan(t) 7a~(t ) ~ ( [an(t)]2 [am(t)] 2) 
dt - 2  m = l  \ I~.12 1-~1~ ta,~(t)l 2 (2.1) 

where 7 is a constant characterizing the reduction rate. The ~, are complex 
constants, the so-called "hidden variables" of Wiener and Siegat. ~1~) They 
are fixed for any single system, and are the components of a vector on the 
unit sphere in an N-dimensional complex vector space. Each different 
physical system will have a different vector ~, and the vectors for a com- 
plete ensemble of physical systems are assumed to be uniformly distributed 
over the unit sphere. 

It is assumed that the ordinary Schr6dinger equation dominates the 
description of the measurement until time t = 0 (7 is negligibly small for 
t < 0 ) ,  and that the dynamics described by Eq. (2.1) dominates for t > 0  (7 
is large for t>0) .  Therefore, at t = 0  the state vector is given by Eq. (1.1) 
( t h u s  [am(0)[ 2 is the probability of the mth outcome of the measurement 
according to quantum theory), which provides the initial conditions for 
Eq. (2. l ). 

It can be shown (9'12) that, according to Eq. (2.1), the state to which the 
reduction takes place is the one for which [am(O)12/l~ml 2 is the largest. It 
also can be shown that the fraction of state vectors in the ensemble which 
reduce to l~bm, t )  is lam(0)l  2, thereby giving the same predictions as quan- 
tum theory once the reduction is completed. The trouble is that the 
amplitudes approach their asymptotic values of 0 and 1 exponentially with 
time, 5 so the reduction is not completed in a finite time. 

To see this, let us first define x,(t)= la,(t)l 2, z , -  I~n[2; upon multiply- 
ing (2.1) by a* and adding the complex conjugate equation we obtain 

d---i- = 7x, Xm (2.2) 
m = l  

First, consider the special case of a two-state system. Then (2.2) can be 
integrated exactly, with the result 

x~(t)z2[-1 - - x l ( t ) ] z ~  xa(0)z2 x2(O)Z~ e -~'  (2.3) 
xl(t)-z~ x~(O)-z~ 

5 j. j. Tutsch~3) calculates the "slowest collapse time" for the Bohm-Bub theory. By this he 
means the longest time it takes the largest squared amplitude to rise to 0.99. The exponential 
behavior is implicit in his result, but he does not comment on the attendant meaninglessness 
of a superposition of macroscopically distinguishable states that lasts forever. 
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where x2(t)= 1--x~(t)  and z2= l - z ~ .  If x~(0 )>z l ,  then-it can be seen 
from (2.3) that Xl ~ 1 and x2 ~ 0 as t ~ ~ ;  indeed, 

x l ( t )  t~oo~ 1 - A e  -~/~)~, x2(t) ,~o~' Ae (~/z~)t (2.4a,b) 

where A is a constant. This behavior holds in the general case. If x l / z l  > 
Xm/2 m ( m ~  = 1), then it follows from (2.2) that x~ ~ 1 and X m ~ O  (m-r 1) as 
t ~ ~ .  Therefore for large times (2.2) becomes 

dt ~ T x l  Xm ~ (1 --Xl) (2.5a) 
m=2 Z1 

[which obtains because u ~ 1], and Z m  = 1 Xm = 1 follows from (2.2), and xl 

,,~ -TXm Xl ~ -;J - -  (2.5b) 
dt z 1 

Equations (2.5a,b) can be integrated immediately with the results (2.4a,b) 
[with x2 replaced by Xm in (2.4b)]. 

Thus the reduction in the Bohm-Bub theory takes infinite time to be 
completed, if ~ ~ oo. In fact, in proposing an experimental test of their 
theory, Bohm and Bub did take ~ = ~ ,  and suggested a test of possible 
dynamics of the hidden variables ~, for which they had not given a 
dynamical equation! 

A dynamical reduction model has recently been given by Gisin. (14) It 
also has infinite reduction time. (~s~ 

3. PEARLE'S  D Y N A M I C A L  R E D U C T I O N  T H E O R Y  

In the author's theory, the dynamical reduction is described by 

dan(t) N an(t) 
i dt = ~ e n m ( t ) a * ( t ) - -  (3.1) 

a*(t)  m=l  

(a* is the complex conjugate of am). Here ~,m = A,mB,m(t) ,  where A,m are 
the constant elements of a Hermitian matrix, and Bnm(t) are rapidly fluc- 
tuating functions of time (a Hermitian matrix of complex white noise). 
Equation (3.1) is interpreted as a stochastic differential equation in the 
sense of Stratonovich. (~6) It can be shown (l~ that, as a consequence of 
Eq. (3.1), the squared amplitudes xn(t) = Jan(t)[ 2 "play" a modified "gam- 
bler's ruin" game. 

In the "simple gambler's ruin" game, two gamblers (designated 
"heads" and "tails") each start with a given amount of dollars and 
repeatedly toss a fair coin. If the outcome of a toss is heads, then the gam- 
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bler heads receives a dollar from the gambler tails, and vice versa. The 
game continues until one gambler loses all his money, and so can play no 
more. 

Let the game be modified so that (i) N gamblers play in pairs (they 
lose one by one, until a single gambler possesses all the money in the 
game); (ii)each toss takes place in a short time At; (iii)the money 
exchanged per toss is likewise made small (~Atl/2); (iv)the rate of play of 
the nth and ruth gamblers is proportional to [xn(t)Xm(t)] 1/2, where 
xn(t)- gambler n's money at time t/total money in the game. Then it can 
be shown that (~~ in the limit At~O (where the game is "played con- 
tinuously"), the dynamics of the xn(t) of the gamblers, and the dynamics of 
the x , ( t ) -  la~(t)l 2 described by Eq. (3.1) are identical. Indeed, the ensemble 
of gambler's ruin games and the ensemble of solutions of Eq. (3.1) are both 
described by the same diffusion equation 

. . . . .  - -  ; O ' n m  Ot =5 ~ 2 x,x,,p (3.2) 
n , m  = 1 n 

p(x; t) is the probability density of the x's at time t, and O'2m are positive 
constants. 

Because such gambler's ruin games are fair games, or "martingales" 
(d(xn)/dt = 0), it can be shown that the probability the mth gambler (the 
mth squared amplitude Xm) wins all the money (reaches the value 1) is 
Xm(0)=the fraction of money with which he started (= the  probability 
predicted by conventional quantum theory)/1~ Thus the dynamical reduc- 
tion theory gives the same predictions as quantum theory, once the reduc- 
tion is completed. 

It is also well known r that the "simple gambler's ruin" game has a 
finite mean duration, so that the probability is zero that a particular game 
will have an infinite duration. However, the modified gambler's ruin game 
described above is more complicated. Of special concern is modification 
(iv) above, which states that the rate of play between the nth and mth gam- 
blers slows down as either gambler gets close to losing all his money. It is 
conceivable that the rate slows down so much that the game never ends. 
[Indeed, this turns out to be the case if the rate of play is proportional to 
(XnXm) r/2 with r>~2.] Therefore, it is worthwhile examining the mean 
duration of the "games" described by Eq. (3.2), to prove that the reduction 
time is finite in this theory. 
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4. M E A N  REDUCTION T I M E  

Equation (3.2) describes a stationary diffusion of the Fokker-Planck 
type (18) 

~? 0 1 N ~2 
0-Sp(x;x0;')= - i (4.1a) 

n = l  

t~<Ax") z,~o Dnm-<AxnAXm>At at ~o (4.1b) 

with vanishing drift v, = 0. (The vanishing drift is a consequence of the 
"fairness" of the coin tossed by the gamblers.) One can imagine a single 
point [representing a member of the ensemble of systems described by 
Eq. (4.1) or (3.2)] starting out at x at time t = 0 ,  and randomly walking 
over the x space until it reaches some specified boundary. The amount of 
time this takes is called the "first passage time." 

One can write a differential equation for the mean first passage time 
m(x) called "Dynkin's equation"(19): 

• 1 N t?2m(x) 
v, m(x )+  ~ D n m - - = - I  (4.2) 

n = 1  ~Xn 2 . . . .  1 aXn aXm 

This is supplemented by the condition that m must vanish on the boun- 
dary, as it takes no time to reach the boundary from the boundary. One 
way to arrive at Eq. (4.2) is to realize that 

m ( x ) = A t + f  dAx p (x+Ax;  x; At) m ( x + A x )  (4.3) 

which says that the mean first passage time from x can be found by letting 
the system evolve for At sec to x + Ax, and adding to At the mean of the 
first passage times from the new locations. Equations (4.2) follows from 
Eq. (4.3) upon expanding m(x + Ax) in a Taylor series in Ax, and utilizing 
(4.1b). 

For the diffusion equation (3.2), the mean first passage time is 
therefore the solution of 

1 ~ 2 m ( x ) = - 1  (4.4) 
-2 . . . .  l G .mXnXm a x .  a 

However, the boundary condition that must be applied in order that the 
mean first passage time be identified as the mean reduction time is 
somewhat unusual, and needs explanation. 
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The configuration space of the point x in the modified gambler's ruin 
problem described by Eq. (3.2) is the hyperplane ZJ=  1 xn = 1 bounded by 
the hyperplanes Xm = 0 (m = 1 ..... N).  For a two-person game this is a line 
segment, for a three-person game it is an equilateral triangle, for a four-per- 
son game it is a regular tetrahedron, etc. For example, a point representing 
a single four-person game diffuses from the inside of the tetrahedron to one 
of the triangular boundary faces, but the diffusion does not stop there. When 
the point reaches, e.g., the face x4 = 0, this simply means that the fourth 
gambler has lost all his money and is out of the game, but the remaining 
three gamblers continue to play. The phase point diffuses over the 
triangular face until it reaches an edge of the triangle (another gambler 
knocked out of the game), and diffuses over the edge until it reaches a ver- 
tex (where it s tops--the game is over). All this is described by Eq. (3.2)!/1~ 
Thus the boundary condition on m(x) requires that it only vanish at the N 
"vertices" {Xm = 1, Xk=0 ( k r  for m = 1 to N}. On the geometric boun- 
dary of the configuration space region for the N person game (e.g., on the 
triangular faces of the tetrahedron), re(x) must reduce to the expression for 
the mean reduction time for the ( N -  1 )-person game, i.e., to the solution of 
Eq. (4.4) with N replaced by N -  1, with similar boundary conditions. 

We first specialize to the simplest case, in which O'n2m = 0 "2 (symmetry of 
the rate of play of all pairs of gamblers). The solution of Eq. (4.4) 

T n,m E = 1XnXrn n a m ( x ) = - - 1  ( 4 . 5 )  

which satisfies the correct boundary conditions can be written in closed 
form: 

1 N 
m ( x ) =  ~5 ~ ( 1 - x n )  l n ( 1 - x n )  (4.6) 

n = l  

[Substituting (4.6) in the left side of (4.5) and differentiating yields 
- E .  Zm~n x.xm/(1 - x.)  = - 1 . ]  

It is clear from the entropylike expression (4.6) for the mean reduction 
time that it is finite, having its largest value 

m(x)<~-~2 ( N -  1)ln[1 + ( N -  1) -1 ] (4.7) 

where x,  = 1IN (n = 1 ..... N).  Since the mean reduction time is finite, those 
state vector reductions (modified gambler's ruin games) in the ensemble 
which take an infinite time to be completed comprise only a set of measure 
z e r o .  
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In passing, it is worth noting that, for large N, the maximum mean 
reduction time on the right-hand side of Eq. (4.7) becomes 1/~r 2, indepen- 
dent of N. This is a desirable feature in a dynamic reduction theory. For 
example, one would not wish the reduction time to grow without bound or 
to vanish just because an apparatus is designed with a fine resolution to 
measure one among many possible eigenvalues. 

Finally we treat the general case (4.4), for which we show that the 
solution of the simpler case (4.5) is a majorant or minorant with 
appropriate choices of a 2. That is, if we denote the solution of Eq. (4.5) by 
m(x, o2), retaining m(x) as the solution of Eq. (4.4), and choose 62> 
max(aZm), r < min(a~m) ' then 

m(x, r ~> m(x) >/m(x, #2) (4.8) 

The argument is a standard one. (2~ One easily shows that 

~.mX.Xm "ax. a g Z 2 Em(x, _o-2)-m(x)] 
n , m  

- -  1 X m X  n 

--  ~ ~.m ] - -xn  + 1 < 0  (4.9) = 7  E 2 
- m 4 - n  

except at the boundary vertices. It follows that re(x, _o2)--m(x) cannot 
achieve a local minimum (for which the left-hand side of Eq. (4.9) is 
positive semidefinite, in violation of the inequality). The minimum is thus 
achieved only at the boundary vertices, where it equals zero, since at those 
points m ( x , ~ 2 ) = m ( x ) = 0 .  Thus the left-hand inequality in (4.8) is 
obtained. The right-hand inequality is similarly obtained by considering 
m(x) - m(x, #2). 

This completes our demonstration that the reduction time is finite in 
this theory. 

Added Note. After this work was completed, it was brought to my 
attention by the referee that the diffusion equation (3.2) in the simplest case 
Crnm2 = ~2 is known to mathematical population geneticists as the diffusion 
approximation to the Wright-Fisher model of genetic drift. (21) The model 
considers a large but finite genetic population composed of a number of 
alleles (genetic variants such as eye colors). The next generation, of equal 
size, evolves by random selection with replacement from the previous 
generation. The model is called "neutral" because no selective differences or 
mutations are involved. Geneticists are interested in the statistics associated 
with "fixation" of an allele, by which they mean that the population 
becomes composed solely of that allele--what we call "reduction"! Known 
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results include that the probability of fixation of an allele equals its initial 
frequency (in our context, what ensures that the predictions of quantum 
theory are obtained following reduction) and that the mean time of fixation 
is finite Eand given by Eq. (4.6)]. 
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